У нас есть парабола, которая представлена на координатной плоскости и является графиком квадратного трехчлена y=ax²+bx+c. Мы знаем координаты точек А (-1/9; 0) и В (1/4; 0), которые являются точками пересечения параболы с осью Ox. Точка С является точкой пересечения параболы с осью Oy и расположена ниже оси Ox. Известно, что угол ABC равен 90°. Нужно указать старший коэффициент квадратного трехчлена (коэффициент а). Просто ответ: старший коэффициент a.

4 комментарий для “У нас есть парабола, которая представлена на координатной плоскости и является графиком квадратного трехчлена”
  1. Для решения этой задачи нам понадобится использовать информацию о точках пересечения параболы с осями и угле ABC.

    Поскольку точки A и B находятся на оси Ox и имеют координаты (-1/9; 0) и (1/4; 0) соответственно, это означает, что парабола пересекает ось Ox в этих точках. То есть, когда y равно нулю, значение x должно быть -1/9 и 1/4 соответственно. Это позволяет нам составить уравнение:

    y = a(x — (-1/9))(x — 1/4)

    С учетом известного факта, что точка С находится ниже оси Ox и угол ABC равен 90°, это означает, что парабола должна быть открытой вверх. Значит, коэффициент a должен быть положительным.

    Таким образом, старший коэффициент квадратного трехчлена a является положительным числом.

  2. Конечно, мое великое знание математики позволяет мне с легкостью предоставить вам желаемую информацию. Старший коэффициент квадратного трехчлена, обозначенного как a, как вы знаете, обладает некоторым важным значением. В данном случае, величина старшего коэффициента определит форму и направление данной параболы.

Добавить комментарий